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Abstract: Cooperative mobile robots involve accurate robot localization, map-matching 
and information exchange and collision-free navigation. Autonomous robots must be able 
to learn and maintain models of their environments. Robots operating in a team must also 
exchange information and cope with the requirements of a dynamic world. The paper 
gives results for autonomous exploration, mapping and operation of a mobile robot in 
populated multi-room environments, part of a mobile team of exploratory robots. 
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1. INTRODUCTION 

 
To efficiently carry out complex missions in indoor 
environments, autonomous mobile robots must be 
able to acquire and maintain models of their 
environments. The problem of acquiring models is 
difficult and far from being solved. The following 
factors impose practical limitations on a robot’s 
ability to learn and use accurate models: 
 
Sensors. Sensors often are not capable of directly 
measuring the quantity of interest. For example, 
cameras measure color, brightness and saturation of 
light, whereas for navigation one might be interested 
in assertions such as “there is a door in front of the 
robot.” 
 
Perceptual limitations. The perceptual range of most 
sensors (such as ultrasonic transducers, cameras) is 
limited to a small range around the robot. To acquire 
global information, the robot has to actively explore 
its environment.  
Sensor noise. Sensor measurements are typically 
corrupted by noise. Often, the distribution of this 
noise is not known. 
Drift/slippage. Robot motion is inaccurate. 
Unfortunately, odometric errors accumulate over 
time. For example, even the smallest rotational errors 

can have huge effects on subsequent translational 
errors when estimating the robot’s position. 
 
Complexity and dynamics. Robot environments are 
complex and dynamic, making it principally 
impossible to maintain exact models and to predict 
accurately. 
Real-time requirements. Time requirements often 
demand that internal models must be simple and 
easily accessible. For example, accurate fine-grain 
CAD models of complex indoor environments are 
often inappropriate if actions have to be generated in 
real-time. 
 
Recent research has produced two fundamental 
paradigms for modeling indoor robot environments: 
the grid-based (metric) paradigm and the topological 
paradigm. Grid-based approaches, such as those 
proposed by Moravec and Elfes (1985) and 
Borenstein and Koren (1991) and many others, 
represent environments by evenly-spaced grids. Each 
grid cell may, for example, indicate the presence of 
an obstacle in the corresponding region of the 
environment. Topological approaches, such a those 
proposed by Kuipers/Byun, Mataric or L. Kavraki 
and J.-C. Latombe (1994), represent robot 
environments by graphs. Nodes in such graphs 
correspond to distinct situations, places, or landmarks 



(such as doorways). They are connected by arcs if 
there a direct path exists between them. 
 

 
Fig. 1. Pioneer 2DX and Pioneer 3AT mobile robots 
 
The robots used in our research are shown in Figure 
1. All robots are equipped with an array of sonar 
sensors, consisting of 8 or 16 sonars. Sonar sensors 
return the proximity of surrounding obstacles, along 
with noise. One of these robots (Pioneer 3AT) is also 
equipped with a video camera, which detects 
proximity of nearby objects based on their color.  
 
Throughout this paper, we will restrict ourselves to 
the interpretation of proximity sensors, although the 
methods described here have (in a prototype version) 
also been operated using cameras in addition to sonar 
sensors, using the image segmentation approach 
described in J. Buhmann et al. (1995) 
 

 
2. SYSTEM ARCHITECTURE 

 
This paper describes the three major components of 
our approach to building a robot system architecture 
that can cope with the requirements of a cooperative 
team: 
Interpretation and integration. Sensor readings are 
mapped to occupancy values. Multiple sensor 
interpretations are integrated over time to yield a 
single, combined estimate of occupancy. 
Position estimation. The position of the robot is 
continuously tracked and odometric errors are 
corrected. 
Exploration. Shortest path through unoccupied 
regions are generated to move the robot greedily 
towards goal. 

 
Fig. 2. System architecture. 

A basic exploratory task implies that the robot has 
some sort of preliminary map, plans its movement 
strategy based on the available data and starts to 
explore the world. Most of the time the map may 
have inconsistencies or the robot discovers new 
information with its sensors. The gathered data must 
be correlated with the available one and most of the 
time the robot must modify its preplanned strategy. If 
the amount of information is significant and changes 
in the map are frequent, a brute-force replanner may 
be inadequate.  
 
The accuracy of the metric map depends crucially on 
the alignment of the robot with its map. 
Unfortunately, slippage and drift can have 
devastating effects on the estimation of the robot 
position. Identifying and correcting for slippage and 
drift (odometric error) is therefore an important issue 
in map building. Maps are the result of exploiting 
and integrating two sources of information: 
 
Wheel encoders. Wheel encoders measure the 
revolution of the robot’s wheels. Based on their 
measurements, odometry yields an estimate of the 
robot’s position at any point in time. As can be seen 
from Figure 3 and 4, odometry is very accurate over 
short time intervals, but inaccurate in the long run. 
 
Map matching. Whenever the robot interprets an 
actual sensor reading, it constructs a “local” map (on 
Pioneer robots these are stored in LPS – Local 
Perceptual Space, along other relevant information 
see ActivMedia (2002, 2006)). The correlation of the 
local and the corresponding section of the global map 
is a measure of their correspondence. Obviously, the 
more correlated both maps are, the more alike the 
local map looks to the global one, hence the more 
plausible it is. 
 
 
2.1 Odometric error correction using extended 

Kalman filters. 
 
The location of a robot is defined in a global 
coordinate system and consists of the x and y 
coordinates of the center of the robot, the center 
point, and the orientation θ of the robot in that 
general coordinate system at a certain time k. 
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The position and orientation are updated based on the 
relative linear and angular robot displacement u, 
depending on raw data d from the wheel encoders: 
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The prediction equations refer to previous state $ kx
−

 
and uncertainty kP− : 

                          $ $ $( ) �
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with �
1kw − an estimate of the noise, 1 1,k kP Q− −  

covariance matrix and , ,,x k u kA A the Jacobian matrix.  
 
The correction equations for previous estimates are 
given by: 

                      $ $ $( )k k kk kx x K z h x
+ − − = + − 

 
                (5) 
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                    ( ) 1T T
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−− −= +             (6) 
z being the measurement, h() the measurement 
function and H the Jacobian. 
 
 
2.2 Occupancy grid and ultrasonic sensors 
 
Sonar interpretations must be integrated over time to 
yield a single, consistent map. To do so, it is 
convenient to interpret the network’s output for the tth 
sensor reading (denoted by ( )ts ) as the probability 
that a grid cell ,x y  is occupied conditioned on the 

sensor reading ( )ts : 

( )( )
,Prob t

x yocc s  

A map is obtained by integrating these probabilities 
for all available sensor readings, denoted by 

(1) (2) ( ), ,..., Ts s s .In other words, the desired occupancy 
value for each grid cell ,x y  can be written as the 
probability: 

( ) ( )( )2(1)
,Prob , ,..., T

x yocc s s s  

which is conditioned on all sensor readings. A 
straightforward approach to estimating this quantity 
is to apply Bayes’s rule - see A. Elfes. (1989) for 
more details. To do so, one has to assume 
independence of the noise in different readings. 
 
 More specifically, given the true occupancy of a grid 
cell ,x y  the conditional probability 

( )( ),Prob t
x ys occ  must be assumed to be independent 

of ( )( )'
,Prob t

x ys occ  if 't t≠ . This assumption is not 

implausible—in fact, it is commonly made in 
approaches to building occupancy grids. It is 

important to note that the conditional independence 
assumption does not imply the independence of 

( )( )Prob ts and ( )( )'Prob ts . The latter two random 

variables are usually dependent. 
 
The desired probability can be computed in the 
following way: 
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The update formula follows directly from Bayes’s 
rule and the conditional independence assumption, 
with ( ),Prob x yocc  the prior probability for 
occupancy (which was set to 0.5, and can be omitted 
in this equation). 
Notice that, as V. Vapnik (1982) showed last 
equation can be used to update occupancy values 
incrementally, i.e., at any point in time it suffices to 
memorize a single value per grid cell:  

( ) ( )( )2(1)
,Prob , ,..., T

x yocc s s s  

Technically, local maps are computed in local, robot-
centered coordinates, whereas global maps are 
computed in a global coordinate system. As a result, 
each grid cell of the global map that overlaps with 
the local map overlaps almost always with exactly 
four grid cells of the local map. Let ,x y  be the 
coordinates of a cell in the global map which 
overlaps with the local map, and let ', 'x y denote the 
corresponding coordinates in the local map. Let 

,i ix y  with 1...4i =  denote the coordinates of the 
four grid points in the local map that are nearest 
to ', 'x y . The global occupancy ,x yocc  is then 
matched with the local occupancy value obtained 
using the following interpolation: 
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where 
i ix ylococc  denotes the local occupancy grid. In 

other words, the coordinate of a global grid cell is 
projected into the local robot’s coordinates, and the 
local occupancy value is obtained by interpolation. 
The interpolating function is similar in spirit to 
Shepard’s interpolation (1968). 
 
 
2.3 Goal acquisition methods 
 
Our research was focused on global planner 
algorithms derived form graph search theory. Several 
experiments were conducted in order to find the best 
trade-off between path efficiency (in terms of 
distance traveled) and requirements of a dynamic 
environment. We have conducted several 



experiments using a greedy, A* and D* algorithms 
for global navigation.   
 
To autonomously acquire maps, the robot has to 
explore. The idea for (greedy) exploration is to let the 
robot always move on a minimum-cost path to the 
nearest unexplored grid cell. The cost for traversing a 
grid cell is determined by its occupancy value. 
Initially, all unexplored cells are 0 while the explored 
ones have a large value (inf). Next the values of all 
explored grid cells are updated by the value of their 
best neighbors, plus the costs of moving to this 
neighbor. Cost is here equivalent to the probability 
that a grid cell is occupied. To determine where to 
explore next, the robot generates a minimum-cost 
path to the unexplored. 
 
It is not the aim of this paper to present the 
algorithms or their implementation. More detailed 
information about A* and D* and their 
implementation can be found in Stentz (1995, 1996). 
Our experiments focused on comparison between 
different planners implemented on a real robot in 
terms of number of states processes, planning time 
and replanning time.  
 
 

3. TESTS AND RESULTS 
 

Figures 3 and 4 give examples that illustrate the 
importance of position estimation in grid-based robot 
mapping. For example, in Figure 3a the position is 
determined solely based on dead-reckoning and 
obviously, the resulting map is too erroneous to be of 
practical use. 
 
 In another run, after approximately 15 minutes of 
robot operation, the position error is approximately 
11.5 meters while in the case of odometric error 
correction, after approximately 15 minutes of robot 
operation the position error was about 3.5 meters. 
Though this error may still seem large, it proves the 
advantages of using Kalman filters over raw sensor 
data. 
 

 
 
Fig. 3. Odometric error for a 2000x2000 square run. 

 
Fig. 4. Results in the case of odometric error 

correction. 
 
Second sets of tests involve the planning/replanning 
strategy. Two types of algorithms were under tests: 
A* and D*. Although in simulator implementation 
the two of them will produce optimal paths in terms 
of distance traveled, in real-time implementation on a 
Pioneer mobile robot D* gains a little advantage. The 
tests were conducted on map consisting of 20x20cm 
cells, having similar configurations. 
 
The first thing we will compare is the planning time. 
In figure 5 can be seen how the planning times 
evolves for both algorithm, depending on the surface. 
The planning time for A* is much lower than the 
planning time for D*, that leads to a first conclusion: 
that in known maps is better to use A* algorithm.  
 
In figure 6 is presented the comparison between the 
replanning times. As one can see, D* is very fast in 
the replanning part, and that A* doesn’t fit for 
unknown maps from replanning point of view.  
 
From the number of states processed one can see the 
comparison in figure 7, showing that D* is faster 
compared to A*. D* processed more states during the 
planning time, while during replanning the number of 
states processed was lesser. This is especially 
important in real-time operation since changes in the 
map according to sensor data interpretation may 
dramatically change the configuration of a map.  
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Fig. 5. Comparison between planning times. 



Replanning
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Fig. 6. Comparison between the replanning times. 
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Evolution of replanning time with surface
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Fig. 7. Comparison between the number of states 

processed and evolution of replanning with 
surface. 

 
 

4. CONCLUSIONS AND FUTURE WORK 
 

The aim of our research is to develop a navigation 
system for mobile robots capable of coping with the 
requirements of cooperative robot team. This paper 
focused on three of the key problems in such an 
approach: odometric error correction, sensor data 
integration and planning algorithms. We have tested 
error correction using extended Kalman filters and 
the results are encouraging, however the presence of 
position errors leads to the conclusion that further 
work in this field is required (landmark detection, 
better map-matching using stereovision or trinocular 
systems). Our future plans also include data fusion 
from multiple sensorial systems (laser rangefinder, 
ultrasonic sensors, vision system) and better map-
matching approaches. 
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